SAT.Solve
Back to table
/*
SAT
SAT.Solve
[binary() result]=SAT.Solve(Dimacs problem, int maxCount=-1);
problem : the source of the problem in the Dimacs format.
maxCount : the number of the solution expected.
result : a list of binary number, indicates the value that satisfies the SAT problem
Solve a SAT problem described in the format of DIMACS.
If maxCount=-1, it returns all the solution.
*/
//-------------------------------------------------------------------
// examples
f=Dimacs()
{
p cnf 0 0
-1 -2 0
-1 -3 0
-2 -1 0
-2 -3 0
-2 -4 0
-3 -1 0
-3 -2 0
-3 -4 0
-3 -5 0
-4 -2 0
-4 -3 0
-4 -5 0
-5 -3 0
-5 -4 0
1 2 3 0
2 1 3 4 0
3 1 2 4 0
4 2 3 5 0
5 3 4 0
}
[result]=SAT.Solve(f,2);
Print(result);
//-------------------------------------------------------------------
// result
IsBiUnateFunctionTo IsNegativeUnateFunctionTo IsOneFunction IsThresholdFunction ToAndXor ToDualFunction ToSOP ToTruthTable DiagramGateName DigitalSystem Eq FeedbackSystem Minus MantissaToPositiveDecimal object() real() SOP StateVariables OutputAndStateBasedly GetExcitationTable Compatibility SimpleInner StateTransition Utility ComputeDONTCARE EnlargeLogicFunction SemanticEval var() XORP Zero
The website is simply translated by using the Google Translate. Please inform us if you find the wrong/funny/weird translation.